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Damage spreading1 -3) turned out to be a useful tool(4> to investigate the
dynamics of Ising models. Two replicas of the same system, which initially
differ only on a small subset of the lattice sites, are simulated using the same
random numbers and one observes how this "damage" spreads during
dynamics by a site-by-site comparison of the two replicas.

Research done(5'6) using the Metropolis, Glauber and Heat Bath
methods, flipping locally one spin at a time, revealed that whether damage
spreads for a particular model or not depends on the kind of dynamics
being used. As was recently demonstrated,(7) this "subjective" aspect of
damage spreading can be overcome if one considers all possible single-spin-
flip dynamic procedures that are consistent with the physics of a single
replica. The family of possible dynamic processes that satisfy this require-
ment is quite large; the above-mentioned methods form a small subset of
this family. When more general processes were considered, damage was
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Damage spreading for Ising cluster dynamics is investigated numerically by
using random numbers in a way that conforms with the notion of submitting
the two evolving replicas to the same thermal noise. Two damage spreading
transitions are found; damage does not spread either at low or high tempera-
tures. We determine some critical exponents at the high-temperature transition
point, which seem consistent with directed percolation.
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shown to spread(8) even for the one-dimensional Ising model, with expo-
nents that were either in the Directed Percolation(9) (DP) or the Parity
Conserving(10) universality classes.

In this publication we extend further the dynamic procedures for
which damage spreading is defined. Whereas all work mentioned above
was done for single-spin-flip dynamics, we study here evolution when a
non-local procedure, the Swendsen-Wang (SW) cluster algorithm(11) is
used. To our knowledge this was done, so far, only in ref. 12, which
pointed out a conceptual difficulty in extending to SW the definition of
"using the same random numbers on the two replicas." In the current
paper we present one possible way to overcome this difficulty and address
the issue of how damage spreads when a non-local algorithm is used and
estimate the associated exponents.

To understand the difficulty mentioned above note that the SW algo-
rithm consists of two steps in which random numbers are generated, namely
the construction of the clusters and the assignment of their new orientation.
In DS simulations, however, even when we use the same random numbers
to generate the SW clusters, we will in general generate different clusters on
the two replicas. Reference 12 attempted to associate clusters of one replica
with those of the other by the order of the clusters' appearance and
assigned the same random number to each such pair of clusters. Even the
number of clusters in the two replicas is not the same; identification by
order may well cause two groups of spins at very remote location being
assigned the same random numbers. Hence the observation(12) that after
many iterations the two replicas became quite uncorrelated can be
attributed to the fact that the two replicas were, in fact, not submitted to
the same thermal noise. (This problem can be avoided for the Wolff algo-
rithm(11) where our tests gave always spreading of damage above Tc.)

We propose here another way, one which is more in the spirit of the
standard definition of damage spreading, to deal with the random number
problem for Swendsen-Wang damage dynamics. We study how damage spreads
for the Ising model and present numerical results for L x L square lattices.

Our method works as follows. The first step of the SW procedure
starts from a spin configuration and generates clusters. We do this by
assigning a random number 0 < pij < 1 to every bond, i.e., the same number
is assigned to a given bond on the two replicas. Each bond is either frozen
or deleted according to the standard SW rule:(11)

If S iS j = -1 the bond is deleted

If S i S j = 1 it is deleted if pij < exp( — 2J/kBT) and frozen otherwise

Sites connected by frozen bonds form the SW clusters
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Clearly, identical spin configurations on the two replicas give rise to identical
clusters.

The second step of the SW procedure assigns each cluster a spin value,
+ 1, at random; i.e., by assigning a random number to each cluster. The
problem mentioned above arises at this step; the number of clusters may
differ in the two replicas, any spin can belong to one cluster in one replica
and to a different one in the other. What is the meaning, in this situation,
of using the same random number on the two replicas? To overcome this
ambiguity, we assign different random numbers pi to every site of the lat-
tice, but the same random number is assigned to the same site i on the two
replicas. The pi are uniformly distributed about zero and the new status of
every cluster is determined depending on whether the sum of all the random
numbers assigned to its sites is positive or negative. Clearly, if two clusters
in the two replicas contain identical sites, these sums will be identical, and
the two clusters will be treated in the same way. If the two clusters are
nearly identical, then the two sums will be strongly correlated and most
probably treated the same way. If the two clusters share no common site,
the two sums will be completely uncorrelated and so will be the cluster
orientations. This completes the description of a single SW step, which is our
Monte Carlo time unit. New random numbers are chosen after every step.5

The procedure outlined above is the analogue of the Heat Bath algo-
rithm, to which we restrict our attention in this paper. After equilibration
we introduce damage, flipping in one replica sites that belong to one line
in the center of the lattice, and only the odd sites on it are damaged to pre-
vent the "infinite" cluster from splitting into two halves below the critical
temperature Tc. (We used helical boundaries in one and free boundaries in
the other direction. We also initially damaged the center quarter of the
whole lattice, and got the same spreading temperature as given below.)

Figure la shows the equilibrium damage as a function of temperature.
As expected, damage does not spread at low temperatures; it starts to
spread below Tc and its limiting long-time value reaches a maximum at Tc.
For T < TC we find enormous fluctuations, and even extended regions of
damage may vanish completely within a single time step. We ascribe this
to the presence of an "infinite" cluster below Tc, which we flip just as we
do the many finite clusters. Interestingly, there is a second transition—
damage shrinks and vanishes above a spreading temperature Ts, with
1.33 < Ts/Tc < 1.34 for 200 < L < 1000. Close to Ts the damage seems to
vanish as (Ts-T)B with B = 0.65; see Fig. 1b.

5 It is natural to associate the random numbers with thermal noise which, in turn, is normally
assumed to be local in space and time. In this sense our proposed procedure is more "physi-
cal" than the one used in ref . 12.
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Fig. 1. Fraction of damaged sites in equilibrium versus temperature. Part a shows the whole
investigated region on linear scales, part b gives double-logarithmically part of the same data,
slightly below the spreading temperature.



The Swendsen-Wang dynamics was invented to reduce critical slowing
down; indeed, right at T= Tc the relaxation time in two dimensions
increases only logarithmically with system size.(13) Our damage, however,
shows strong critical slowing down on both sides of the spreading tem-
perature Ts. For a quantitative study we use the damage vanishing
method:(4, 14) Initially half of the lattice is damaged (if all of it is damaged,
the damage vanishes immediately). Next, we checked for T > Ts how the
damage decays to zero; Fig. 2a shows that it does so exponentially, after an
initial transient. Fig. 2b shows that these exponential relaxation times
roughly equal rr oc (T/Tc — 1.335 ) - 1 . 2 . When, however, instead of rr we
studied r1, the average time after which the damage has become exactly
zero (not shown), an exponent nearer to 0.9 was observed; such discrepan-
cies have been observed earlier(14) with the latter definition of relaxation
times.

We also performed more limited studies of damage spreading from a
single initial site. In this type of simulation(15) one usually expects the
damage to survive after t iterations with a probability oc t-s, the number
of damaged sites to grow as tn+s, and the mean square distance of the
damaged region from the origin of the damage to grow as t2. The latter two
quantities are averaged only over those lattices which are still damaged at
time t.

The initialization with a single seed of damage is, however, very inef-
ficient numerically, since often the damage vanishes very fast and we end
up simulating a whole lattice to study only a small region around this site.
Hence to get meaningful results one must average the evolution over a very
large number of sample runs which, in turn, limits the sizes of the lattices
used. For example, we performed averages over 5000 runs of an 301 x 301
system; the results obtained this way may, therefore, be strongly influenced
by finite size effects. With all these caveats taken into account we obtained
(see Fig. 3) at T=TS the following results: a. The survival probability of
damage to time t is oc 1/0.5, i.e. we get (5 = 0.5 (versus the DP result(15)

6 = 0.460(6)); b. the number of damaged sites grows as t0.7 (to be compared
with o + n = 0.681 in DP—note that we measure damage per surviving
runs); c. The mean square distance of the damaged region from the origin
of the damage grows as t1.1 whereas z = 1.134 in DP. Since our exponents
(including our B = 0.65, vs 0.584) deviate from those of DP(15) by only
about 10%, we believe that the observed damage spreading transition at
T=TS belongs to the universality class of directed percolation.

In summary, we studied damage spreading using a non-local algo-
rithm. By introducing a definition of damage spreading for the Swendsen-
Wang algorithm which conforms with the standard notion of submitting
the two replicas to the same thermal noise, in contrast with ref. 12, we
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Fig. 2. Relaxation of the damage for 1.35 < T/TC < 1.60, that means above the spreading
temperature; depending on the distance from Ts, damage is introduced at time = 30, 50, or
100. Straight lines in the semilogarithmic plots of part a correspond to exp( —t/ r ) , and the
relaxation times r are plotted double-logarithmically in part b.
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Fig. 3. Dynamics at the spreading temperature T/Tc ~ 1.335: Number of surviving damages
(O) out of 5000 samples, mean square distance ( +) and number of damaged sites ( D ) . The
latter two quantities are summed up over all samples and then divided by the number of
surviving damages (O), i.e., by the number samples which were still damaged at that time t.

discovered some non-trivial results; damage spreads at temperatures
between two transitions. Since at Ts > Tc the clusters are finite the trans-
ition according to our numerical estimates of the exponents may well be in
the standard DP universality class; below Tc, however, "infinite" clusters
are present and the damage spreading transition may be in a new univer-
sality class. Possible extensions of our work may include working at other
dimensions, with different spin models, as well as to improving the
accuracy of our numerics on the square lattice.
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